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Abstract

The focus of this paper is on the description of progressive failure in structural masonry. A continuum formulation is

developed here applicable to a representative volume which comprises a large number of units interspersed by mortar

joints. The conditions at failure are defined by employing a critical plane approach, whereby the orientation of the

localization plane is specified by solving a constrained optimization problem. The framework is subsequently extended

to model the inelastic deformation process. This is accomplished by incorporating a multi-laminate approach in which

the average response is derived from sliding/separation characteristics along a set of randomly distributed planes. The

localized deformation is described by considering a structured medium comprising the intact masonry intercepted by a

distinct macrocrack. Extensive numerical simulations are performed examining the response of brickwork in com-

pression/tension regimes, at different orientations of the bed joints relative to the loading direction. A boundary-value

problem is also studied involving an inelastic finite element analysis of a bearing masonry wall subjected to in-plane

loading.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Finite element analysis of large masonry structures cannot, in general, be conducted by discretizing

individual units and/or mortar joints, as this would be computationally prohibitive. Therefore, some

macroscopic formulations should be employed, which are capable of describing the anisotropic properties

of the brickwork. In recent years, several attempts have been made to estimate the average properties of

masonry panels. Those include micropolar Cosserat continuum models (e.g., Sulem and Muhlhaus, 1997;

Masiani and Trovalusci, 1996) as well as applications of the mathematical theories of homogenization for

periodic media (e.g., Anthoine, 1995, 1997; Urbanski et al., 1995). Such approaches, although rigorous,
have never been implemented in the context of a structural analysis of practical engineering problems. For

Cosserat media, one of the main difficulties is the development of a systematic methodology for identifi-

cation of equivalent continuum properties. For a rigorous homogenization approach, the extension to
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inelastic range poses profound conceptual problems and is not, in general, feasible. Given these difficulties,

a number of simplified approaches have been developed incorporating various idealizations at the level of

either the geometry of brickwork or the interaction between the constituents. Such approximate homo-

genization techniques include the works of Pande et al. (1989), Maier et al. (1991), Lourenco and Zucchini
(2001), etc. However, even for these simplified models, the implementation in the context of a non-linear

finite element analysis is still a difficult task and has not yet been accomplished.

The main objective of this work is to develop a continuum theory for describing the inelastic behaviour

of structural masonry. The approach may be perceived as a pragmatic alternative to the homogenization

method. It is simpler in numerical implementation and addresses all stages of the deformation process,

including the localized deformation associated with formation of macrocracks.

The paper is written in the following sequence. In the next section, a general formulation of the problem

is provided. The conditions at failure are described by invoking a critical plane approach. Here, the failure
criterion is defined in terms of traction components acting on a physical plane and its representation

employs a set of distribution functions specifying the variation of strength parameters. The approach

consists of finding such an orientation of the localization plane for which the failure function reaches a

maximum. This approach is subsequently extended to incorporate the inelastic deformation. The behaviour

along each plane is defined in terms of a plasticity framework and the global macroscopic response is

obtained by averaging the contributions from all active planes. The formation of macrocracks is perceived

as a localization problem and the formulation is derived by incorporating a volume averaging procedure

which employs a �characteristic dimension�. The general mathematical framework is illustrated by some
numerical examples provided in Section 3. Here, the details pertaining to the specification of material

functions/parameters are discussed first, followed by numerical analyses examining the response of

brickwork in compression and tension regimes for different orientations of the bed joints. The paper is

concluded by presenting the results of a finite element analysis of a bearing masonry wall subjected to in-

plane loading. Here, the evolution of the crack pattern is investigated, prior to the collapse of the wall, and

a simple reinforcement strategy is examined.

2. General formulation

In this section, a mathematical model describing the inelastic response of structural masonry is outlined.

Fig. 1 shows a schematic diagram of a representative volume of the material, which consists of a large
number of masonry units interspersed by two orthogonal families of bed and head joints filled with mortar.

The geometry of the problem is referred to a coordinate system x, while the principal material triad is

defined by the base vectors lð1Þ, lð2Þ, lð3Þ. The general formulation of the problem comprises three main

aspects. The first one is related to specification of the conditions at failure, which is accomplished by in-

corporating a critical plane approach. The second step involves an extension of this approach to model the

inelastic deformation. This is achieved by incorporating a plasticity framework, in which the response is

described in terms of sliding/separation along a set of randomly distributed planes. The last issue involves

the description of localized deformation associated with formation of macrocracks.

2.1. Failure locus for structural masonry

The conditions at failure can be defined by postulating a path-independent criterion. The general form of

the failure function incorporated here is similar to that proposed in a recent article by Ushaksaraei and

Pietruszczak (2002). The formulation of the problem is based on a critical plane approach (Pietruszczak
and Mroz, 2001), which consists of specifying the orientation of a localization plane on which the failure
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function reaches a maximum. In this section, the main assumptions embedded in this criterion are briefly
reviewed.

For a representative volume as depicted in Fig. 1, the conditions at failure along an arbitrary plane of

orientation ni, are defined here by invoking a simple bi-linear representation

F ðniÞ ¼ s þ lcr � c ¼ 0; for r6 0

F ðniÞ ¼ s � cð1� r=r0Þ ¼ 0; for r > 0
ð1Þ

In the expressions above, s and r are the shear and normal components of the traction vector, ti, on this

plane, i.e.

s ¼ jrijnisjj; r ¼ rijninj ð2Þ

where

si ¼ tsi=ktsik; tsi ¼ ðdij � ninjÞrjknk; nisi ¼ 0 ð3Þ

Moreover, the parameters lc and c represent the coefficient of friction and cohesion, respectively, whereas

r0 denotes the tensile strength in the direction normal to the plane. Eq. (1) may be perceived as a simple
approximation to a more general quadratic form, as considered in the original reference. The geometric

representation of the failure criterion (1) is provided in Fig. 2.

In order to describe the anisotropic nature of the structural masonry, all the basic material parameters

have been defined in terms of distribution functions

lc ¼ lc
oð1þ Xl

ijninjÞ; c ¼ c01ð1þ Xc
ijninjÞ þ c02ðXc

ijninjÞ
2

r0 ¼ r01ð1þ Xr
ijninjÞ þ r02ðXr

ijninjÞ
2

ð4Þ

In Eq. (4), lc
o designates the orientation average of lc; r01; r02 and c01; c02 are constants, whereas X�s

represent a set of symmetric traceless tensors which describe the bias in the spatial distribution of the

parameters. It is noted that the distribution of c and r0 employs second-order dyadic products of Xij and

ninj, which allows for a more accurate representation of the material behaviour.

The orientation of the localization plane can be determined by maximizing the failure function F , Eq. (1),

with respect to ni and si, subject to constraints nini ¼ 1, sisi ¼ 1, nisi ¼ 0. Introducing Lagrange multipliers
k1, k2, k3, the corresponding Lagrangian functions become

β

2x

1x

(2)l
(1)l

Fig. 1. Geometry of the problem.
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G ¼ jrijnisjj þ lc
oð1þ Xl

ijninjÞrpqnpnq � c01ð1þ Xc
ijninjÞ � c02ðXc

ijninjÞ
2

� k1ðnini � 1Þ � k2ðsisi � 1Þ � k3nisi ð5Þ

for r6 0, and

G ¼ jrijnisjj½r01ð1þ Xr
ijninjÞ þ r02ðXr

ijninjÞ
2	 � ½c01ð1þ Xc

ijninjÞ þ c02ðXc
ijninjÞ

2	½r01ð1þ Xr
pqnpnqÞ

þ r02ðXr
pqnpnqÞ

2 � rpqnpnq	 � k1ðnini � 1Þ � k2ðsisi � 1Þ � k3nisi ð6Þ
for r > 0.

The stationary conditions with respect to ni and si, together with the constraints of the problem, provide

now a set of algebraic equations which can be solved to define the orientation of the localization plane

along which F is a maximum.

2.2. Description of inelastic deformation

In this part, the methodology outlined above is extended to incorporate the description of the defor-

mation process. This is accomplished by attributing the inelastic behaviour to sliding/separation along an

infinite set of randomly oriented planes. For each plane, the conditions at failure are represented by the

local criterion (1), which incorporates the scalar–valued functions (4). The inelastic deformation is then

accounted for by invoking an appropriate plasticity formulation. This approach is conceptually similar to

the so-called multi-laminate framework (Pande and Sharma, 1983; Pietruszczak and Pande, 1987).
Assume that the yield and plastic potential functions for the ith plane, with unit normal ni, have a

general form

f ðniÞ ¼ f ðr; s; jÞ ¼ 0; wðniÞ ¼ wðr; sÞ ¼ const: ð7Þ
where s and r are defined according to Eq. (2) and j is a hardening parameter, which is a function of the

plastic deformation history. The equation of the yield surface is formulated in such a way that

j ! 1 ) F ! 0, so that the conditions at failure are consistent with the representation (1).

Introducing a local frame �xx associated with the base vectors ni and si, the flow rule may be written as

_�ee�eepi ¼ _kk
ow
o�tti

ð8Þ

where �eei is the strain vector, whereas the corresponding traction �tti has the components �tti ¼ fr; s; 0g. The

strain rates contributed by this plane are expressed as a symmetric part of a dyadic product

1
µ t

µ c1

σ

τ

σo

c

Fig. 2. Failure criterion on an arbitrarily oriented plane.
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_eepij ¼ 1
2
ð _eepi nj þ _eepj niÞ; _eepi ¼ Tij _�ee�ee

p
j ð9Þ

where Tij is the transformation matrix. Thus, substituting (8) into (9)

_eepij ¼
1

2
_kkðTipnj þ TjpniÞ

ow
o�ttp

ð10Þ

The global macroscopic deformation is obtained by averaging the contributions from all active planes.

Thus,

_ee�
p
ij
¼ 1

8p

Z
S

_kkðTipnj þ TjpniÞ
ow
o�ttp

dS ð11Þ

In practical implementations, the integration process is carried out numerically by adopting a set of

�sampling planes�. Details concerning the orientation of these planes and the distribution of weight coef-

ficients are provided by Pande and Sharma (1983).

The global constitutive relation may now be obtained by invoking the additivity of elastic and plastic

deformation, i.e.

_eeij ¼ Cijkl _rrkl þ _ee�
p
ij

ð12Þ

where Cijkl is the elastic compliance operator. It is noted that this operator may be estimated by invoking a

homogenization technique. Several such approaches have been reported in the literature (e.g., Anthoine,

1995; Pietruszczak and Niu, 1992; Pande et al., 1989).

2.3. Description of localized deformation

The constitutive relation (12) governs the response of the material prior to the onset of a localized

deformation mode, which is associated with formation of macrocracks. Within the framework employed

here, the localization takes place on a plane for which F ¼ max F and the direction of the macrocrack is

identified with that of the critical plane. The behaviour after the inception of localization is described by

incorporating an averaging procedure, similar to that developed in Pietruszczak (1999).

Referring to Fig. 3, consider a representative volume of the material, which comprises now the �intact�
masonry intercepted by a macrocrack of a given orientation n̂ni. The formulation of the problem incor-

porates the stress/strain rate decomposition based on volume averaging

Fig. 3. Sample intercepted by a macrocrack of orientation n̂ni.
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_rrij ¼ tð1Þ _rrð1Þ
ij þ tð2Þ _rrð2Þ

ij ; _eeij ¼ tð1Þ _eeð1Þij þ tð2Þ _eeð2Þij ð13Þ

Here, the index (1) refers to the intact material outside the localization zone, (2) denotes the material in the

fractured zone and t�s represent the corresponding volume fractions. All quantities are referred to the

global coordinate system. The strain rate in the fractured zone may be conveniently defined in terms of
velocity discontinuities _ggi, as a symmetric part of a dyadic product

_eeð2Þij ¼ 1

2h
ð _ggin̂nj þ _ggjn̂niÞ ð14Þ

where h is the thickness of the macrocrack.

The equilibrium requires that the traction ti along the discontinuity plane remains continuous. Thus,

_tti ¼ _rrð1Þ
ij n̂nj ð15Þ

Assume now the constitutive relations for both constituents take the general form

_eeð1Þij ¼ Cijkl _rr
ð1Þ
kl ; _ggi ¼ Kij_ttj ð16Þ

It should be noted that since the material in the fractured zone undergoes strain–softening, Cijkl is, in

general, an elastic operator as defined by Eq. (12). Substituting now the second relation in Eq. (16) into

Eq. (14), and taking into account Eq. (15) gives

_eeð2Þij ¼ 1

2h
ðKipn̂njn̂nk þ Kjpn̂nin̂nkÞ _rrð1Þ

pk ð17Þ

Thus, in view of the strain decomposition (13)

_eeij ¼ tð1ÞCijkl _rr
ð1Þ
kl þ 1

2
tðKipn̂njn̂nk þ Kjpn̂nin̂nkÞ _rrð1Þ

pk ð18Þ

where t ¼ tð2Þ=h represents the ratio of the area of the fractured zone to the volume of the sample. Thus the

parameter t is, in fact, independent of h. Noting now that tð2Þ � tð1Þ, the stress decomposition in Eq. (13)

simplifies to _rrij ’ tð1Þ _rrð1Þ
ij ’ _rrð1Þ

ij . Therefore, Eq. (18) can be approximated by

_eeij ¼ ½Cijpk þ 1
2
tðKipn̂njn̂nk þ Kjpn̂nin̂nkÞ	 _rrpk ð19Þ

which provides the required macroscopic constitutive relation.

3. Numerical simulations

In this section, the constitutive relations formulated above have been implemented in a numerical code in

order to investigate the response of structural masonry panels in a series of axial compression/tension tests.

The simulations have been carried out for different orientations of the bed joints relative to the loading

direction. Whenever possible, the predictions have been compared with the experimental data reported in

the literature. In what follows, the details on the specification of material functions are discussed first; later,
the results of the numerical simulations are presented.

3.1. Specification of material functions

The inelastic deformation process has been described by invoking the framework presented in the
preceding Section 2.2. A simple formulation has been implemented here, whereby the irreversible defor-

mations in the tensile regime, prior to formation of a macrocrack, have been neglected. Consequently, the
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yield condition for r > 0 has been assumed in the same functional form as the second equation in (1), while

in the compression regime, a linear approximation has been employed

f ðniÞ ¼ s þ lr � c ¼ 0; l ¼ lðjÞ ð20Þ
where j is a hardening parameter. The hardening effects have been attributed here to the plastic shear

strain, i.e.

l ¼ lc j
Aþ j

; j ¼
Z

j _ccpjdt ð21Þ

where _ccp ¼ _�ee�eep2 and A is a material constant. It should be noted that, according to Eq. (21), as j ! 1 there is

l ! lc which implies that f ðniÞ ! F ðniÞ. Thus, the conditions at failure are consistent with those stipulated
by the first equation in (1).

The plastic flow has been described by a non-associated rule, Eq. (8), in which the potential function has

been defined as

wðniÞ ¼ s � gcðr � rc
0Þ ln

rc
0 � r
r̂r0

¼ 0; rc
0 ¼

c
lc

ð22Þ

Here, r̂r0 is evaluated from the condition wðniÞ ¼ 0, whereas gc is a parameter which represents the value of

g ¼ s=ðrc
0 � rÞ at which a transition from compaction to dilatancy takes place.

The above description, viz. Eqs. (20)–(22), is rather simplistic and apparently other, more elaborated

plasticity frameworks can be implemented here. In particular, the formulation may be augmented by ac-

counting for sensitivity of the hardening characteristics to the value of the normal component of the
traction as well as incorporating the inelastic behaviour in the tensile regime.

Finally, it is noted that the elastic properties associated with each sampling plane can be defined by

invoking the dyadic decomposition in Eq. (9). Thus,

ti ¼ rijnj ¼ Aijej; Aij ¼ Dijklnjnk ð23Þ
where Dijkl ¼ C�1

ijkl is the elastic stiffness operator, which has been estimated here based on a homogenization

procedure described in Pietruszczak and Niu (1992).

The strain localizes on a �critical� plane, for which the value of the failure function F ðniÞ is maximum.

The description of the localized deformation requires the specification of the operator Kij, Eq. (16), which
defines the properties of the material confined to the fracture zone. These properties have been described

here by invoking again a simple plasticity framework, which incorporates a strain–softening. It is noted that

the stress state at the inception of localization satisfies F ! 0, where the function F is defined in Eq. (1).

Substituting in both these equations c ¼ ltr0, where lt is the slope of the tensile branch (Fig. 2), one obtains

F ðniÞ ¼ s þ lr � ltr0 ¼ 0 ð24Þ
where l ¼ lt for r > 0 (tension regime) and l ! lc for r6 0 (in compression). Thus, the yield function

associated with the localization plane, has been chosen in a functional form consistent with representation

(24), i.e.

f ðn̂niÞ ¼ s þ lr � ltr0 ¼ 0 ð25Þ
where n̂ni specifies the normal to the localization plane, r0 is the softening function and l ¼ const: is

evaluated at the onset of localization.

The strain–softening effects have been attributed to the normal component of the displacement dis-

continuity gp1 and the degradation function r0 ¼ r0ðjÞ has been selected in a simple exponential form

r0 ¼ r0 e
�Cj; j ¼

Z
j _ggp1jdt ð26Þ
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where r0 is the tensile strength in the direction normal to the localization plane and C represents a material

constant. The formulation incorporated an associated flow rule, which in the context of Eq. (25), resulted in

a progressive dilation in the fractured zone. Given Eqs. (25) and (26), the operator Kij can be easily es-

tablished following a standard plasticity formalism.
Finally, note that after the inception of strain localization, the material response is sensitive to the

�characteristic dimension� t, which appears in the constitutive relation (19). In the numerical simulations

carried out under Section 3.2, the value of t was evaluated based on the geometry of the brickwork panel

and the corresponding orientation of the localization plane. In the context of finite element analysis, as

presented in Section 4, t was estimated by evaluating a partitioned volume associated with each Gauss

point, in a manner similar to that as described in Pietruszczak and Niu (1992).

3.2. Numerical results

The formulation of the problem, as presented above, incorporates a number of material parameters

which need to be identified. Those include, in addition to elastic constants, a set of parameters defining the

conditions at failure, i.e. those appearing in the distribution functions (4); the parameters A and gc, Eqs. (21)

and (22), governing the inelastic behaviour on the ith plane; and the constant C, Eq. (26), specifying the rate
of softening associated with the localized deformation.

The functions specified in Eq. (4) have been selected based on the experimental data reported by Page

(1983). Note that the set of functions employed here, is somewhat different from that adopted in

Ushaksaraei and Pietruszczak (2002). In particular, the latter reference incorporated lt, Eq. (24), rather

than cohesion c, Eq. (1), as an independent variable. The current choice is motivated primarily by sim-

plifications in the identification procedure, whereby the properties in tension do not explicitly affect those in

compression. The details on the identification procedure for r0ðniÞ, lcðniÞ and ltðniÞ are provided in

Ushaksaraei and Pietruszczak (2002). Here, a quadratic approximation has been employed for r0ðniÞ, while
the key-values of cðniÞ have been estimated from the respective distributions of r0ðniÞ and ltðniÞ provided in

the earlier reference. Furthermore, the functions (4) have been augmented to include orthotropic charac-

teristics. It is noted that no experimental data is available in Page (1983) on the out-of-plane properties.

Therefore, the latter have been assessed on a rather intuitive basis, following again the procedure analogous

to that set out in Ushaksaraei and Pietruszczak (2002). The corresponding values of the material para-

meters are:

Xlc

1 ¼ Xlc

2 ¼ 0; r01 ¼ 0:898 MPa; r02 ¼ �14:249 MPa; Xr
1 ¼ �0:158;

Xr
2 ¼ 0:249; c01 ¼ 2:498 MPa; c02 ¼ �19:281 MPa; Xc

1 ¼ �0:221; Xc
2 ¼ 0:393

The elastic properties of the brickwork can, in general, be estimated by invoking a homogenization

procedure. In the numerical simulations presented here, the values of elastic constants have been chosen

based on the estimates developed in the article by Pietruszczak and Niu (1992). Using the properties of

constituents and the geometric arrangement similar to those reported by Page, the following values have

been selected:

E1 ¼ 7700 MPa; E2 ¼ 8800 MPa; m13 ¼ 0:25; m21 ¼ 0:29; G12 ¼ 1750 MPa

The results reported by Page provide no information on the stress–strain characteristics. Therefore, the

values of the parameters governing the inelastic response have been estimated from other sources. The

hardening parameter A has been chosen by examining the results of a set of axial compression tests as

reported by Hamid and Drysdale (1980). These results indicate that the axial strain at failure remains within

the range of 0.1–0.25%, depending on the orientation of the bed joints relative to the loading direction. By
adopting this as a guideline, the value of A was chosen as A ¼ 0:0004. It should be noted that, given the
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appropriate experimental data, the parameter A may also be defined in terms of a scalar–valued function

similar to that employed in Eq. (4). Furthermore, the transition from compaction to dilatancy was assumed

to occur at gc ¼ 0:95lc, which is typical for a broad class of brittle-plastic materials (e.g. Kupfer et al., 1969;

Kotsovos and Newman, 1979). Finally, no information is currently available pertaining to specification of
the softening parameter C, Eq. (26). Therefore, some parametric studies have been conducted examining

the sensitivity of the global characteristics to the value of this parameter.

The first set of numerical results, as shown in Figs. 4 and 5, pertains to specification of conditions at

failure in a series of axial compression/tension tests, performed at different orientation of bed joints relative

to the loading direction. Fig. 4a shows the distribution of compressive strength, whereas Fig. 4b presents

Fig. 4. Variation of uniaxial compressive strength and orientation of failure plane with sample orientation.

Fig. 5. Variation of uniaxial tensile strength and orientation of failure plane with sample orientation.
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the corresponding evolution of the orientation of the localization plane. The results based on the proposed

formulation are compared here with the experimental data of Page (1983) as well as with an exact solution

obtained by solving a 3D constrained optimization problem, viz. Eq. (5). The primary objective, at this

point, is to investigate the accuracy of different integration schemes employed in Eq. (11). Since for all tests
considered here the exact solution furnished an in-plane rapture surface, the simulations for the plasticity

model have been carried out by employing a 2D sampling rule incorporating a set of 36 uniformly dis-
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Fig. 6. Stress–strain response in uniaxial compression for different orientations of bed joints.
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Fig. 7. Influence of the softening parameter, C, and the size of the sample, a, on the response in uniaxial compression (b ¼ 0�).
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tributed planes. It is evident that this integration scheme is sufficiently accurate. A similar conclusion can be
drawn based on the results reported in Fig. 5, which pertain to a set of axial tension tests.

Examining the results for compression, Fig. 4b, it is evident that for low values of b the failure occurs

through formation of macrocracks in the masonry units, in the direction which is in a close proximity of

head joints. The minimum strength at b � 20� is actually associated with the failure along head joints. At

b � 40� there is a transition in the failure mode, i.e. the localization plane is shifted to the region in the

vicinity of the bed joints. The minimum, at b � 65�, corresponds to failure of the bed joints. A somewhat
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Fig. 8. Stress–strain characteristics in uniaxial compression (in hardening regime).
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Fig. 9. Evolution of shear strain in uniaxial compression tests.

S. Pietruszczak, R. Ushaksaraei / International Journal of Solids and Structures 40 (2003) 4003–4019 4013



similar trend can be observed in tension, Fig. 5b. Here, for b6 30�, the failure of the brickwork is induced

by rapture of the head joints, whereas for b > 40�, the failure occurs in the bed joints. The results of the

simulations are, in general, fairly consistent with the data of Page.

Complete mechanical characteristics corresponding to compression regime are shown in a set of sub-
sequent figures. Fig. 6 presents the stress–strain response in uniaxial compression for different orientations

of the bed joints. The characteristics shown here include the descending branches, associated with the lo-

calized deformation mode. The latter have been computed for a square sample with the in-plane dimension

of a ¼ 0:72 m, which is representative of the brickwork panel tested by Page. It was assumed that the

transition to localized mode commences at l ¼ 0:99lc, while C ¼ 150 m�1, Eq. (26). The influence of both

parameters C and a on the mechanical response is investigated further in Fig. 7. Here, the simulations are

performed for b ¼ 0�. Evidently, an increase in the value of C results in a steeper descending branch. It is

also apparent that the response in the post-localized regime is sensitive to the geometry of the sample. For
the same value of C, the average rate of strain–softening increases with the size of the sample, i.e. the value

of a.
Fig. 8 presents the variation of vertical compressive stress, in the hardening regime, with both the axial

and lateral strains. The trends, as depicted in this figure, are fairly consistent with the experimental data

reported by Hamid and Drysdale (1980). For all tests considered here, the deformation mode is, in general,

anisotropic; i.e. the change in vertical stress is accompanied by distortion of the sample. This is evidenced in

Fig. 9, which presents the evolution of shear strain in samples tested at different orientation relative to the

loading direction.

4. Inelastic finite element analysis of a bearing masonry wall subjected to in-plane loading

The proposed constitutive model has been implemented in a finite element code. In what follows, an
illustrative example is provided involving a brick masonry wall subjected to in-plane loading under plane

stress conditions. The primary objective here is to investigate the evolution of the cracking pattern leading

to the collapse of the wall, and to examine a simple reinforcement strategy.

The example involves a masonry wall of a power substation building, typical of those constructed in the

Montreal region in Canada (cf. Gocevski et al., 2002). The building, which houses the command panels for

Fig. 10. Finite element discretization of the unreinforced masonry wall.
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the substation, is a one-floor structure with the dimensions in the range of 30 m� 30 m. The exterior

bearing walls, with the height of approximately 5 m, are made of brick masonry. The part of the structure

analyzed here is depicted in Fig. 10. The bearing wall, with the in-plane dimensions of 27.2 m� 5.4 m, has

three identical openings with a symmetric arrangement. The wall has a concrete foundation at the base and
is reinforced only with concrete beams above the window openings.

The wall was discretized using four-noded rectangular elements with isoparametric formulation and

2� 2 Gauss quadrature. The concrete beams above the openings were modelled by incorporating 2D beam

elements. The material parameters for the brickwork were identical to those used for the numerical sim-

ulations discussed in the preceding section. The concrete parts were considered as elastic. Owing to the

symmetry in geometry and boundary conditions only a half of the structure was analysed, assuming no

horizontal movement along the centre-line of the wall. In addition, the effect of out-of-plane walls was

approximated by constraining the horizontal movement along the right-hand boundary (Fig. 10).
The loading process consisted of applying uniform vertical displacements along the upper surface, which
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Fig. 11. Global load–displacement response of the unreinforced bearing wall.

Fig. 12. Distorted mesh of the unreinforced wall at the ultimate load.
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simulated the load exerted by the roof structure. The problem was solved using the �tangential stiffness�
approach (Owen and Hinton, 1980) and employing a non-symmetric equation solver. Since the analysis

incorporating the homogenization procedure, Eq. (19), shows little sensitivity to the discretazation, no

explicit mesh convergence study was performed.

The results of the numerical simulations are shown in Figs. 11–15. Fig. 11 presents the global load–

displacement characteristic for the wall. The ultimate conditions are reached at the external load of about

30 MN, after which the response becomes unstable. Fig. 12 shows the distorted mesh at the stage preceding
the collapse of the wall. It is evident here that significant distortions develop in the neighbourhood of the

openings. Fig. 13 shows the evolution of the crack pattern in tension and compression regimes. At the early

stages of the deformation process, the tensile cracks form in the region adjacent to the openings and

propagate upwards, Fig. 13a. As the load increases further, some compressive cracks develop along the

vertical boundaries nearby the openings. Fig. 13b presents the distribution of the damage zones at the

ultimate load.

In order to improve the stability of the wall, a simple reinforcement scenario has been considered. This

involved the placement of steel bracings behind the critical sections of the brickwork, as indicated in Fig. 14.
The horizontal/vertical columns and the cross-braces incorporated W360� 122 and L152� 89� 9.5 cross-

sections, respectively, and were modelled using 2D beam elements. Note that the cross-braces were attached

to the wall only at the junction between horizontal and vertical columns. The results of numerical simu-

lations are shown in Fig. 15. Fig. 15a presents the load–displacement characteristic, whereas Fig. 15b

depicts the pattern of cracking at the external load of about 30 MN (i.e. the ultimate load for the unre-

inforced system). It is evident that a simple reinforcement strategy employed here is quite efficient. The

extent of structural damage is significantly less pronounced and the global characteristic remains in the

Fig. 13. Evolution of crack patterns in tension and compression regimes for the unreinforced bearing wall.
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linear range. For the case considered here, the collapse is associated with yielding of the reinforcement and

takes place at much higher load intensities.

5. Final remarks

In this work, a continuum framework has been developed for modelling of inelastic behaviour of

structural masonry. The formulation incorporates the anisotropic material characteristics and addresses

both stages of the deformation process, i.e. those associated with homogeneous as well as localized de-

formation mode.

The proposed approach depicts the basic trends in the behaviour of structural masonry, in both tension
and compression regimes, as evidenced in Section 3. These include a strong sensitivity of mechanical

characteristics to the orientation of the sample and the associated evolution of the direction of localization

plane. The formulation may be perceived as a pragmatic alternative to the homogenization method. In fact,

in the absence of appropriate experimental tests (which are expensive and difficult to perform), the

homogenization approach may be implemented to generate a set of data, which can subsequently be used to

identify the material parameters/functions involved. Such a methodology, in the context of specification of

the conditions at failure, has been employed in Gocevski and Pietruszczak (2001).

The formulation has been implemented in a finite element code and an illustrative numerical example has
been provided involving an inelastic analysis of a bearing masonry wall. It needs to be emphasized that the

Fig. 14. (a) Details of the steel reinforcement and (b) distorted mesh of the reinforced wall (at the ultimate load for the unreinforced

case).
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previous attempts to model the progressive evolution of failure in masonry structures have been quite

scarce. Those which are noticeable, include the work of Lourenco et al. (1998) and Lopez et al. (1999). The

present approach is primarily applicable to large-scale masonry structures, as the fundamental assumption

employed here is that of the macrohomogeneity of the medium.
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