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Abstract

The focus of this paper is on the description of progressive failure in structural masonry. A continuum formulation is
developed here applicable to a representative volume which comprises a large number of units interspersed by mortar
joints. The conditions at failure are defined by employing a critical plane approach, whereby the orientation of the
localization plane is specified by solving a constrained optimization problem. The framework is subsequently extended
to model the inelastic deformation process. This is accomplished by incorporating a multi-laminate approach in which
the average response is derived from sliding/separation characteristics along a set of randomly distributed planes. The
localized deformation is described by considering a structured medium comprising the intact masonry intercepted by a
distinct macrocrack. Extensive numerical simulations are performed examining the response of brickwork in com-
pression/tension regimes, at different orientations of the bed joints relative to the loading direction. A boundary-value
problem is also studied involving an inelastic finite element analysis of a bearing masonry wall subjected to in-plane
loading.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Finite element analysis of large masonry structures cannot, in general, be conducted by discretizing
individual units and/or mortar joints, as this would be computationally prohibitive. Therefore, some
macroscopic formulations should be employed, which are capable of describing the anisotropic properties
of the brickwork. In recent years, several attempts have been made to estimate the average properties of
masonry panels. Those include micropolar Cosserat continuum models (e.g., Sulem and Muhlhaus, 1997,
Masiani and Trovalusci, 1996) as well as applications of the mathematical theories of homogenization for
periodic media (e.g., Anthoine, 1995, 1997; Urbanski et al., 1995). Such approaches, although rigorous,
have never been implemented in the context of a structural analysis of practical engineering problems. For
Cosserat media, one of the main difficulties is the development of a systematic methodology for identifi-
cation of equivalent continuum properties. For a rigorous homogenization approach, the extension to
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inelastic range poses profound conceptual problems and is not, in general, feasible. Given these difficulties,
a number of simplified approaches have been developed incorporating various idealizations at the level of
either the geometry of brickwork or the interaction between the constituents. Such approximate homo-
genization techniques include the works of Pande et al. (1989), Maier et al. (1991), Lourenco and Zucchini
(2001), etc. However, even for these simplified models, the implementation in the context of a non-linear
finite element analysis is still a difficult task and has not yet been accomplished.

The main objective of this work is to develop a continuum theory for describing the inelastic behaviour
of structural masonry. The approach may be perceived as a pragmatic alternative to the homogenization
method. It is simpler in numerical implementation and addresses all stages of the deformation process,
including the localized deformation associated with formation of macrocracks.

The paper is written in the following sequence. In the next section, a general formulation of the problem
is provided. The conditions at failure are described by invoking a critical plane approach. Here, the failure
criterion is defined in terms of traction components acting on a physical plane and its representation
employs a set of distribution functions specifying the variation of strength parameters. The approach
consists of finding such an orientation of the localization plane for which the failure function reaches a
maximum. This approach is subsequently extended to incorporate the inelastic deformation. The behaviour
along each plane is defined in terms of a plasticity framework and the global macroscopic response is
obtained by averaging the contributions from all active planes. The formation of macrocracks is perceived
as a localization problem and the formulation is derived by incorporating a volume averaging procedure
which employs a ‘characteristic dimension’. The general mathematical framework is illustrated by some
numerical examples provided in Section 3. Here, the details pertaining to the specification of material
functions/parameters are discussed first, followed by numerical analyses examining the response of
brickwork in compression and tension regimes for different orientations of the bed joints. The paper is
concluded by presenting the results of a finite element analysis of a bearing masonry wall subjected to in-
plane loading. Here, the evolution of the crack pattern is investigated, prior to the collapse of the wall, and
a simple reinforcement strategy is examined.

2. General formulation

In this section, a mathematical model describing the inelastic response of structural masonry is outlined.
Fig. 1 shows a schematic diagram of a representative volume of the material, which consists of a large
number of masonry units interspersed by two orthogonal families of bed and head joints filled with mortar.
The geometry of the problem is referred to a coordinate system x, while the principal material triad is
defined by the base vectors I, I®, I The general formulation of the problem comprises three main
aspects. The first one is related to specification of the conditions at failure, which is accomplished by in-
corporating a critical plane approach. The second step involves an extension of this approach to model the
inelastic deformation. This is achieved by incorporating a plasticity framework, in which the response is
described in terms of sliding/separation along a set of randomly distributed planes. The last issue involves
the description of localized deformation associated with formation of macrocracks.

2.1. Failure locus for structural masonry

The conditions at failure can be defined by postulating a path-independent criterion. The general form of
the failure function incorporated here is similar to that proposed in a recent article by Ushaksaraei and
Pietruszczak (2002). The formulation of the problem is based on a critical plane approach (Pietruszczak
and Mroz, 2001), which consists of specifying the orientation of a localization plane on which the failure
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Fig. 1. Geometry of the problem.

function reaches a maximum. In this section, the main assumptions embedded in this criterion are briefly
reviewed.

For a representative volume as depicted in Fig. 1, the conditions at failure along an arbitrary plane of
orientation n;, are defined here by invoking a simple bi-linear representation

F(n)=14+u6—c=0; fore<0
Fn)=1—c(l—0/0y) =0; foro>0

(1)

In the expressions above, T and ¢ are the shear and normal components of the traction vector, ¢;, on this
plane, i.e.

T = |O-l'jnisj‘7 o — U,‘jn,‘nj (2)
where
si=6/8]l, 6 = (85— mn)oun;  nisi=0 (3)

Moreover, the parameters u¢ and ¢ represent the coefficient of friction and cohesion, respectively, whereas
ao denotes the tensile strength in the direction normal to the plane. Eq. (1) may be perceived as a simple
approximation to a more general quadratic form, as considered in the original reference. The geometric
representation of the failure criterion (1) is provided in Fig. 2.

In order to describe the anisotropic nature of the structural masonry, all the basic material parameters
have been defined in terms of distribution functions

1= pg(L+ Qiminy), ¢ = cor(1 + Qminy) + coz(ijninj)z

ao = aoi (1 + Qnn;) + UOZ(Q;"i”j)2

)

In Eq. (4), u designates the orientation average of 1 oo1,002 and coi,cor are constants, whereas Qs
represent a set of symmetric traceless tensors which describe the bias in the spatial distribution of the
parameters. It is noted that the distribution of ¢ and ¢, employs second-order dyadic products of €;; and
nn;, which allows for a more accurate representation of the material behaviour.

The orientation of the localization plane can be determined by maximizing the failure function F, Eq. (1),
with respect to n; and s;, subject to constraints n;n; = 1, s;5; = 1, n;s; = 0. Introducing Lagrange multipliers
A1, A2, A3, the corresponding Lagrangian functions become
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Fig. 2. Failure criterion on an arbitrarily oriented plane.

G = |oyms;| + pi (1 + Qf}ninj)apqnpnq —co(l+ ijn,n,) — coz(ij.n,n.,-)2
— M(mn; — 1) = Xa(sisi — 1) — Aams; (5)
for 0 <0, and
G = |oyns;|[oo (1 + Q:}n,-nj) + UOZ(QZn,-nj)2] — [ear (1 + Qlcjn,n,) + coz(ijn,nj)z][am(l + Q;qnpnq)
+ aoz(ngnpnq)2 — Gpiphy] — Ai(nin; — 1) — Aa(sisi — 1) — Zsms; (6)

for ¢ > 0.

The stationary conditions with respect to n; and s;, together with the constraints of the problem, provide
now a set of algebraic equations which can be solved to define the orientation of the localization plane
along which F is a maximum.

2.2. Description of inelastic deformation

In this part, the methodology outlined above is extended to incorporate the description of the defor-
mation process. This is accomplished by attributing the inelastic behaviour to sliding/separation along an
infinite set of randomly oriented planes. For each plane, the conditions at failure are represented by the
local criterion (1), which incorporates the scalar—valued functions (4). The inelastic deformation is then
accounted for by invoking an appropriate plasticity formulation. This approach is conceptually similar to
the so-called multi-laminate framework (Pande and Sharma, 1983; Pietruszczak and Pande, 1987).

Assume that the yield and plastic potential functions for the ith plane, with unit normal n;, have a
general form

f(m)=f(o,7,) =0; Y(n)=y(o,1) = const. (7)
where 7 and ¢ are defined according to Eq. (2) and « is a hardening parameter, which is a function of the
plastic deformation history. The equation of the yield surface is formulated in such a way that
K — 0o = F — 0, so that the conditions at failure are consistent with the representation (1).

Introducing a local frame x associated with the base vectors »n; and s;, the flow rule may be written as

. - Oy

=g (3)
where ¢; is the strain vector, whereas the corresponding traction # has the components #; = {o,7,0}. The
strain rates contributed by this plane are expressed as a symmetric part of a dyadic product
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& =5eln;+ &), & =Te )
where Tj; is the transformation matrix. Thus, substituting (8) into (9)
. I oy
’gg‘ = 5'1(]11‘1)”] + ]}p”i)ﬁ (10)
P

The global macroscopic deformation is obtained by averaging the contributions from all active planes.
Thus,
. 1 : oy
¢ =5 : MTipn; + Tjpn:) & ds (11)
In practical implementations, the integration process is carried out numerically by adopting a set of
‘sampling planes’. Details concerning the orientation of these planes and the distribution of weight coef-
ficients are provided by Pande and Sharma (1983).
The global constitutive relation may now be obtained by invoking the additivity of elastic and plastic
deformation, i.e.

éij = l:/'klo.-k[ + (2‘,1?] (12)

where Cjj, is the elastic compliance operator. It is noted that this operator may be estimated by invoking a
homogenization technique. Several such approaches have been reported in the literature (e.g., Anthoine,
1995; Pietruszczak and Niu, 1992; Pande et al., 1989).

2.3. Description of localized deformation

The constitutive relation (12) governs the response of the material prior to the onset of a localized
deformation mode, which is associated with formation of macrocracks. Within the framework employed
here, the localization takes place on a plane for which F = max F' and the direction of the macrocrack is
identified with that of the critical plane. The behaviour after the inception of localization is described by
incorporating an averaging procedure, similar to that developed in Pietruszczak (1999).

Referring to Fig. 3, consider a representative volume of the material, which comprises now the ‘intact’
masonry intercepted by a macrocrack of a given orientation ;. The formulation of the problem incor-
porates the stress/strain rate decomposition based on volume averaging

Xy

o)

@ ¥

Fig. 3. Sample intercepted by a macrocrack of orientation #;.
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Here, the index (1) refers to the intact material outside the localization zone, (2) denotes the material in the
fractured zone and v’s represent the corresponding volume fractions. All quantities are referred to the
global coordinate system. The strain rate in the fractured zone may be conveniently defined in terms of
velocity discontinuities g;, as a symmetric part of a dyadic product

1
.(2 PPN .« A
81(./‘) = (&n; + gni) (14)
where /4 is the thickness of the macrocrack.

The equilibrium requires that the traction ¢ along the discontinuity plane remains continuous. Thus,

Assume now the constitutive relations for both constituents take the general form

& = Cuoys & =Ky (16)

i

It should be noted that since the material in the fractured zone undergoes strain—softening, C;;, is, in
general, an elastic operator as defined by Eq. (12). Substituting now the second relation in Eq. (16) into
Eq. (14), and taking into account Eq. (15) gives
. 1 .. PN
81(,2 )= o (Kiph iy + ij”tnk)ﬂ,(;}c) (17)

Thus, in view of the strain decomposition (13)

. . A A A A . (1
&y = v Cyuadly) + (K + Kphiiy) 61! (18)
where v = v/?) /h represents the ratio of the area of the fractured zone to the volume of the sample. Thus the
parameter v is, in fact, independent of 4. Noting now that v® < v(l), the stress decomposition in Eq. (13)

simplifies to 6;; ~ v(”(}',(}) ~ dfjl). Therefore, Eq. (18) can be approximated by
&j = [Cijpk + 30(Kiph e + Kt ) |6 e (19)

which provides the required macroscopic constitutive relation.

3. Numerical simulations

In this section, the constitutive relations formulated above have been implemented in a numerical code in
order to investigate the response of structural masonry panels in a series of axial compression/tension tests.
The simulations have been carried out for different orientations of the bed joints relative to the loading
direction. Whenever possible, the predictions have been compared with the experimental data reported in
the literature. In what follows, the details on the specification of material functions are discussed first; later,
the results of the numerical simulations are presented.

3.1. Specification of material functions
The inelastic deformation process has been described by invoking the framework presented in the

preceding Section 2.2. A simple formulation has been implemented here, whereby the irreversible defor-
mations in the tensile regime, prior to formation of a macrocrack, have been neglected. Consequently, the
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yield condition for ¢ > 0 has been assumed in the same functional form as the second equation in (1), while
in the compression regime, a linear approximation has been employed

Sm) =t 4poe—c=0; p=pu(x) (20)

where k is a hardening parameter. The hardening effects have been attributed here to the plastic shear
strain, i.e.

C K . _ S\
p=r k= [l (1)

where 77 = & and 4 is a material constant. It should be noted that, according to Eq. (21), as x — oo there is
u — p° which implies that f(n;) — F(n;). Thus, the conditions at failure are consistent with those stipulated
by the first equation in (1).

The plastic flow has been described by a non-associated rule, Eq. (8), in which the potential function has
been defined as

Wn) =t~ n(o— o)™ Z =0 o= (22)

Here, 6y is evaluated from the condition ¥/(n;) = 0, whereas 7, is a parameter which represents the value of
n =1/(c{ — o) at which a transition from compaction to dilatancy takes place.

The above description, viz. Egs. (20)—(22), is rather simplistic and apparently other, more elaborated
plasticity frameworks can be implemented here. In particular, the formulation may be augmented by ac-
counting for sensitivity of the hardening characteristics to the value of the normal component of the
traction as well as incorporating the inelastic behaviour in the tensile regime.

Finally, it is noted that the elastic properties associated with each sampling plane can be defined by
invoking the dyadic decomposition in Eq. (9). Thus,

i = oyn; = Ayej; Ay = Dijunjng (23)

where D = Cy/, is the elastic stiffness operator, which has been estimated here based on a homogenization
procedure described in Pietruszczak and Niu (1992).

The strain localizes on a ‘critical’ plane, for which the value of the failure function F(#;) is maximum.
The description of the localized deformation requires the specification of the operator K;;, Eq. (16), which
defines the properties of the material confined to the fracture zone. These properties have been described
here by invoking again a simple plasticity framework, which incorporates a strain—softening. It is noted that
the stress state at the inception of localization satisfies F — 0, where the function F is defined in Eq. (1).
Substituting in both these equations ¢ = u'cy, where u' is the slope of the tensile branch (Fig. 2), one obtains

F(n)=1t+4+ps—uor=0 (24)
where u = u* for ¢ > 0 (tension regime) and p — u° for ¢ <0 (in compression). Thus, the yield function

associated with the localization plane, has been chosen in a functional form consistent with representation
(24), i.e.

f(r) =14 po— 1o, =0 (25)

where n; specifies the normal to the localization plane, G, is the softening function and u = const. is
evaluated at the onset of localization.

The strain-softening effects have been attributed to the normal component of the displacement dis-
continuity g/ and the degradation function G, = Gy(x) has been selected in a simple exponential form

o) = O'()C_CK; K = / |g[17|dt (26)
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where g is the tensile strength in the direction normal to the localization plane and C represents a material
constant. The formulation incorporated an associated flow rule, which in the context of Eq. (25), resulted in
a progressive dilation in the fractured zone. Given Eqgs. (25) and (26), the operator K;; can be easily es-
tablished following a standard plasticity formalism.

Finally, note that after the inception of strain localization, the material response is sensitive to the
‘characteristic dimension’ v, which appears in the constitutive relation (19). In the numerical simulations
carried out under Section 3.2, the value of v was evaluated based on the geometry of the brickwork panel
and the corresponding orientation of the localization plane. In the context of finite element analysis, as
presented in Section 4, v was estimated by evaluating a partitioned volume associated with each Gauss
point, in a manner similar to that as described in Pietruszczak and Niu (1992).

3.2. Numerical results

The formulation of the problem, as presented above, incorporates a number of material parameters
which need to be identified. Those include, in addition to elastic constants, a set of parameters defining the
conditions at failure, i.e. those appearing in the distribution functions (4); the parameters 4 and 7., Egs. (21)
and (22), governing the inelastic behaviour on the ith plane; and the constant C, Eq. (26), specifying the rate
of softening associated with the localized deformation.

The functions specified in Eq. (4) have been selected based on the experimental data reported by Page
(1983). Note that the set of functions employed here, is somewhat different from that adopted in
Ushaksaraei and Pietruszczak (2002). In particular, the latter reference incorporated u', Eq. (24), rather
than cohesion ¢, Eq. (1), as an independent variable. The current choice is motivated primarily by sim-
plifications in the identification procedure, whereby the properties in tension do not explicitly affect those in
compression. The details on the identification procedure for oy(n,;), u°(n;) and u'(n;) are provided in
Ushaksaraei and Pietruszczak (2002). Here, a quadratic approximation has been employed for oy (n;), while
the key-values of ¢(n;) have been estimated from the respective distributions of a((n;) and u'(n;) provided in
the earlier reference. Furthermore, the functions (4) have been augmented to include orthotropic charac-
teristics. It is noted that no experimental data is available in Page (1983) on the out-of-plane properties.
Therefore, the latter have been assessed on a rather intuitive basis, following again the procedure analogous
to that set out in Ushaksaraei and Pietruszczak (2002). The corresponding values of the material para-
meters are:

QF =0 =0, 00 =0.898 MPa; op, = —14.249 MPa; Q7 = —0.158;
Q7 =0.249; co =2.498 MPa; ¢y, = —19.281 MPa; Q¢ = —0.221; 5 =0.393

The elastic properties of the brickwork can, in general, be estimated by invoking a homogenization
procedure. In the numerical simulations presented here, the values of elastic constants have been chosen
based on the estimates developed in the article by Pietruszczak and Niu (1992). Using the properties of
constituents and the geometric arrangement similar to those reported by Page, the following values have
been selected:

E1 = 7700 MPa; E2 = 8800 MPa, Viz = 025, Vo1 = 0297 G12 = 1750 MPa

The results reported by Page provide no information on the stress—strain characteristics. Therefore, the
values of the parameters governing the inelastic response have been estimated from other sources. The
hardening parameter 4 has been chosen by examining the results of a set of axial compression tests as
reported by Hamid and Drysdale (1980). These results indicate that the axial strain at failure remains within
the range of 0.1-0.25%, depending on the orientation of the bed joints relative to the loading direction. By
adopting this as a guideline, the value of 4 was chosen as 4 = 0.0004. It should be noted that, given the
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appropriate experimental data, the parameter 4 may also be defined in terms of a scalar—valued function
similar to that employed in Eq. (4). Furthermore, the transition from compaction to dilatancy was assumed
to occur at n, = 0.95u¢, which is typical for a broad class of brittle-plastic materials (e.g. Kupfer et al., 1969;
Kotsovos and Newman, 1979). Finally, no information is currently available pertaining to specification of
the softening parameter C, Eq. (26). Therefore, some parametric studies have been conducted examining
the sensitivity of the global characteristics to the value of this parameter.

The first set of numerical results, as shown in Figs. 4 and 5, pertains to specification of conditions at
failure in a series of axial compression/tension tests, performed at different orientation of bed joints relative
to the loading direction. Fig. 4a shows the distribution of compressive strength, whereas Fig. 4b presents
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Fig. 5. Variation of uniaxial tensile strength and orientation of failure plane with sample orientation.
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the corresponding evolution of the orientation of the localization plane. The results based on the proposed
formulation are compared here with the experimental data of Page (1983) as well as with an exact solution
obtained by solving a 3D constrained optimization problem, viz. Eq. (5). The primary objective, at this
point, is to investigate the accuracy of different integration schemes employed in Eq. (11). Since for all tests
considered here the exact solution furnished an in-plane rapture surface, the simulations for the plasticity
model have been carried out by employing a 2D sampling rule incorporating a set of 36 uniformly dis-

|52| (MPa)

) =
—oe—0
——225
—— 45
—*—67.5
——90

0 0.002 0.004 0.006

||

Fig. 6. Stress—strain response in uniaxial compression for different orientations of bed joints.

(a) 104 (b) 10—
J A a(cm) =
C (m?) = (cm)
—o— 50
. ——100 8 o
—o—150 ©
] —— 200 P —v— 100
< ©
& 6 . 6
= =3
= =
e, = 4]
2 2
0-% * I * I * ] 0-% * I * I * ]
0 0.002 0.004 0.006 0 0.002 0.004 0.006
|£z| |€2|

Fig. 7. Influence of the softening parameter, C, and the size of the sample, @, on the response in uniaxial compression (ff = 0°).
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Fig. 9. Evolution of shear strain in uniaxial compression tests.

tributed planes. It is evident that this integration scheme is sufficiently accurate. A similar conclusion can be
drawn based on the results reported in Fig. 5, which pertain to a set of axial tension tests.

Examining the results for compression, Fig. 4b, it is evident that for low values of f§ the failure occurs
through formation of macrocracks in the masonry units, in the direction which is in a close proximity of
head joints. The minimum strength at f# ~ 20° is actually associated with the failure along head joints. At
f =~ 40° there is a transition in the failure mode, i.e. the localization plane is shifted to the region in the
vicinity of the bed joints. The minimum, at =~ 65°, corresponds to failure of the bed joints. A somewhat
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similar trend can be observed in tension, Fig. 5b. Here, for < 30°, the failure of the brickwork is induced
by rapture of the head joints, whereas for # > 40°, the failure occurs in the bed joints. The results of the
simulations are, in general, fairly consistent with the data of Page.

Complete mechanical characteristics corresponding to compression regime are shown in a set of sub-
sequent figures. Fig. 6 presents the stress—strain response in uniaxial compression for different orientations
of the bed joints. The characteristics shown here include the descending branches, associated with the lo-
calized deformation mode. The latter have been computed for a square sample with the in-plane dimension
of a = 0.72 m, which is representative of the brickwork panel tested by Page. It was assumed that the
transition to localized mode commences at u = 0.994¢, while C = 150 m~!, Eq. (26). The influence of both
parameters C and a on the mechanical response is investigated further in Fig. 7. Here, the simulations are
performed for f = 0°. Evidently, an increase in the value of C results in a steeper descending branch. It is
also apparent that the response in the post-localized regime is sensitive to the geometry of the sample. For
the same value of C, the average rate of strain—softening increases with the size of the sample, i.e. the value
of a.

Fig. 8 presents the variation of vertical compressive stress, in the hardening regime, with both the axial
and lateral strains. The trends, as depicted in this figure, are fairly consistent with the experimental data
reported by Hamid and Drysdale (1980). For all tests considered here, the deformation mode is, in general,
anisotropic; i.e. the change in vertical stress is accompanied by distortion of the sample. This is evidenced in
Fig. 9, which presents the evolution of shear strain in samples tested at different orientation relative to the
loading direction.

4. Inelastic finite element analysis of a bearing masonry wall subjected to in-plane loading

The proposed constitutive model has been implemented in a finite element code. In what follows, an
illustrative example is provided involving a brick masonry wall subjected to in-plane loading under plane
stress conditions. The primary objective here is to investigate the evolution of the cracking pattern leading
to the collapse of the wall, and to examine a simple reinforcement strategy.

The example involves a masonry wall of a power substation building, typical of those constructed in the
Montreal region in Canada (cf. Gocevski et al., 2002). The building, which houses the command panels for

CENTRE-LINE
| BRICK WALL
|
i
) :
» > J’
¥
6.6 m
CONCRETE
FOUNDATION
b
!_\ 13.6 m 5)

Fig. 10. Finite element discretization of the unreinforced masonry wall.
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the substation, is a one-floor structure with the dimensions in the range of 30 m x 30 m. The exterior
bearing walls, with the height of approximately 5 m, are made of brick masonry. The part of the structure
analyzed here is depicted in Fig. 10. The bearing wall, with the in-plane dimensions of 27.2 m x 5.4 m, has
three identical openings with a symmetric arrangement. The wall has a concrete foundation at the base and
is reinforced only with concrete beams above the window openings.

The wall was discretized using four-noded rectangular elements with isoparametric formulation and
2 x 2 Gauss quadrature. The concrete beams above the openings were modelled by incorporating 2D beam
elements. The material parameters for the brickwork were identical to those used for the numerical sim-
ulations discussed in the preceding section. The concrete parts were considered as elastic. Owing to the
symmetry in geometry and boundary conditions only a half of the structure was analysed, assuming no
horizontal movement along the centre-line of the wall. In addition, the effect of out-of-plane walls was
approximated by constraining the horizontal movement along the right-hand boundary (Fig. 10).
The loading process consisted of applying uniform vertical displacements along the upper surface, which
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Fig. 11. Global load—displacement response of the unreinforced bearing wall.
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Fig. 12. Distorted mesh of the unreinforced wall at the ultimate load.
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Fig. 13. Evolution of crack patterns in tension and compression regimes for the unreinforced bearing wall.

simulated the load exerted by the roof structure. The problem was solved using the ‘tangential stiffness’
approach (Owen and Hinton, 1980) and employing a non-symmetric equation solver. Since the analysis
incorporating the homogenization procedure, Eq. (19), shows little sensitivity to the discretazation, no
explicit mesh convergence study was performed.

The results of the numerical simulations are shown in Figs. 11-15. Fig. 11 presents the global load-
displacement characteristic for the wall. The ultimate conditions are reached at the external load of about
30 MN, after which the response becomes unstable. Fig. 12 shows the distorted mesh at the stage preceding
the collapse of the wall. It is evident here that significant distortions develop in the neighbourhood of the
openings. Fig. 13 shows the evolution of the crack pattern in tension and compression regimes. At the early
stages of the deformation process, the tensile cracks form in the region adjacent to the openings and
propagate upwards, Fig. 13a. As the load increases further, some compressive cracks develop along the
vertical boundaries nearby the openings. Fig. 13b presents the distribution of the damage zones at the
ultimate load.

In order to improve the stability of the wall, a simple reinforcement scenario has been considered. This
involved the placement of steel bracings behind the critical sections of the brickwork, as indicated in Fig. 14.
The horizontal/vertical columns and the cross-braces incorporated W360 x 122 and L152 x 89 x 9.5 cross-
sections, respectively, and were modelled using 2D beam elements. Note that the cross-braces were attached
to the wall only at the junction between horizontal and vertical columns. The results of numerical simu-
lations are shown in Fig. 15. Fig. 15a presents the load-displacement characteristic, whereas Fig. 15b
depicts the pattern of cracking at the external load of about 30 MN (i.e. the ultimate load for the unre-
inforced system). It is evident that a simple reinforcement strategy employed here is quite efficient. The
extent of structural damage is significantly less pronounced and the global characteristic remains in the
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Fig. 14. (a) Details of the steel reinforcement and (b) distorted mesh of the reinforced wall (at the ultimate load for the unreinforced
case).

linear range. For the case considered here, the collapse is associated with yielding of the reinforcement and
takes place at much higher load intensities.

5. Final remarks

In this work, a continuum framework has been developed for modelling of inelastic behaviour of
structural masonry. The formulation incorporates the anisotropic material characteristics and addresses
both stages of the deformation process, i.e. those associated with homogeneous as well as localized de-
formation mode.

The proposed approach depicts the basic trends in the behaviour of structural masonry, in both tension
and compression regimes, as evidenced in Section 3. These include a strong sensitivity of mechanical
characteristics to the orientation of the sample and the associated evolution of the direction of localization
plane. The formulation may be perceived as a pragmatic alternative to the homogenization method. In fact,
in the absence of appropriate experimental tests (which are expensive and difficult to perform), the
homogenization approach may be implemented to generate a set of data, which can subsequently be used to
identify the material parameters/functions involved. Such a methodology, in the context of specification of
the conditions at failure, has been employed in Gocevski and Pietruszczak (2001).

The formulation has been implemented in a finite element code and an illustrative numerical example has
been provided involving an inelastic analysis of a bearing masonry wall. It needs to be emphasized that the
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Fig. 15. (a) Global load—-displacement response of the reinforced bearing wall and (b) crack patterns at the ultimate load corresponding
to the unreinforced case.

previous attempts to model the progressive evolution of failure in masonry structures have been quite
scarce. Those which are noticeable, include the work of Lourenco et al. (1998) and Lopez et al. (1999). The
present approach is primarily applicable to large-scale masonry structures, as the fundamental assumption
employed here is that of the macrohomogeneity of the medium.
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